Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Language
Document Type
Year range
1.
Journal of Applied Polymer Science ; 2022.
Article in English | Scopus | ID: covidwho-2148267

ABSTRACT

The adsorption of viruses from aqueous solution is frequently performed to detect viruses. Charged filtration materials capture viruses via electrostatic interactions, but lack the specificity of biological virus-binding substances like heparin. Herein, we present three methods to immobilize heparin-mimicking, virus-binding polymers to a filter material. Two mussel-inspired approaches are used, based on dopamine or mussel-inspired dendritic polyglycerol, and post-functionalized with a block-copolymer consisting of linear polyglycerol sulfate and amino groups as anchor (lPGS-b-NH2). As third method, a polymer coating based on lPGS with benzophenone anchor groups is tested (lPGS-b-BPh). All three methods yield dense and stable coatings. A positively charged dye serves as a tool to quantitatively analyze the sulfate content on coated fleece. Especially lPGS-b-BPh is shown to be a dense polymer brush coating with about 0.1 polymer chains per nm2. Proteins adsorb to the lPGS coated materials depending on their charge, as shown for lysozyme and human serum albumin. Finally, herpes simplex virus type 1 (HSV-1) and severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) can be removed from solution upon incubation with coated fleece materials by about 90% and 45%, respectively. In summary, the presented techniques may be a useful tool to collect viruses from aqueous environments. © 2022 The Authors. Journal of Applied Polymer Science published by Wiley Periodicals LLC.

2.
Atmosfera ; 36(1):143-154, 2023.
Article in English | Scopus | ID: covidwho-2081247

ABSTRACT

The COVID-19 pandemic introduced a significant decrease in industrial activities and other anthropogenic interventions on the environment, followed by a reduction of the emission of pollutant gases and aerosols. Monitoring of air quality is commonly performed through automatic stations, which can provide nearly real-time, accurate information. However, stations located in urban areas are subject to maintenance problems and extensive coverage for large areas is not feasible. As an alternative approach, data from orbital sensors can provide useful information for large areas at a low cost. Consequently, this study aimed to analyze the partial COVID-19 lockdown effect in atmospheric pollutants and its indirect impact in UV radiation in Rio Grande do Sul, Brazil. Data on concentrations of nitrogen dioxide (NO2), total ozone (O3), and ultraviolet index (UVI) acquired by the OMI sensor aboard the Aura satellite were accessed for May, for the entire period 2010 to 2018, 2019, and 2020. Differences between these time series were calculated. Results showed significant reductions in NO2 in most of the study area by as much as 33.9%, followed by increases in total ozone of up to 3.5% and the UVI by up to 4.8%. Although NO2 plays a fundamental role in stratospheric chemistry, our results suggest that its decrease in 2020 was not directly responsible for the increase in total O3;however, NO2 was partially the cause for the increase in UVI, which in turn led to the heating of the stratosphere, generating an increase in O3 © 2023 Universidad Nacional Autónoma de México, Instituto de Ciencias de la Atmósfera y Cambio Climático

3.
European Biophysics Journal with Biophysics Letters ; 50(SUPPL 1):113-113, 2021.
Article in English | Web of Science | ID: covidwho-1350817
SELECTION OF CITATIONS
SEARCH DETAIL